Outline: Curvature

1. The Angle Function

An angle function for a curve $\vec{x}(t)$ is a continuous function $\theta(t)$ such that

$$
\vec{T}(t)=(\cos \theta(t), \sin \theta(t))
$$

where $\vec{T}(t)$ is the unit tangent vector. The angle function for a curve is uniquely determined up to adding or subtracting integer multiples of 2π.

2. Curvature

For a unit-speed curve $\vec{x}(s)$, the curvature $\kappa_{g}(s)$ is defined by

$$
\kappa_{g}(s)=\frac{d \theta}{d s}=\theta^{\prime}(s)
$$

where $\theta(s)$ is an angle function for the curve. More generally, if $\vec{x}(t)$ is any curve (not necessarily unit speed), the curvature is given by the formula

$$
\kappa_{g}(t)=\frac{d \theta}{d s}=\frac{d \theta / d t}{d s / d t}=\frac{\theta^{\prime}(t)}{s^{\prime}(t)}
$$

where $\theta(t)$ is an angle function, and $s^{\prime}(t)$ denotes the speed.

3. Derivative of the Tangent Vector

If $\vec{x}(t)$ is a regular curve and $\vec{T}(t)=(\cos \theta(t), \sin \theta(t))$ is its unit tangent vector, then

$$
\vec{T}^{\prime}(t)=\theta^{\prime}(t) \vec{U}(t)
$$

where $\vec{U}(t)$ is the unit normal vector. It follows that

$$
\vec{T}^{\prime}(t)=\kappa_{g}(t) s^{\prime}(t) \vec{U}(t)
$$

4. Rotating Unit Vectors

More generally, if $\vec{V}(t)=(\cos \theta(t), \sin \theta(t))$ is any rotating unit vector, then

$$
\vec{V}^{\prime}(t)=\theta^{\prime}(t) \vec{U}(t)
$$

where $\vec{U}(t)$ is the unit vector whose direction is 90° counterclockwise from $\vec{V}(t)$.

5. Osculating Circle

The osculating circle to a curve $\vec{x}(t)$ at time t is the circle with center $\vec{x}(t)+\frac{1}{\kappa_{g}(t)} \vec{U}(t)$ and radius $\left|1 / \kappa_{g}(t)\right|$.

6. Acceleration

If $\vec{x}(t)$ is any parametric curve, then

$$
\vec{x}^{\prime \prime}(t)=\kappa_{g}(t) s^{\prime}(t)^{2} \vec{U}(t)+s^{\prime \prime}(t) \vec{T}(t)
$$

Since $\vec{U}(t)$ and $\vec{V}(t)$ are perpendicular unit vectors, we can also write this formula as

$$
\vec{x}^{\prime \prime}(t) \cdot \vec{U}(t)=\kappa_{g}(t) s^{\prime}(t)^{2} \quad \text { and } \quad \vec{x}^{\prime \prime}(t) \cdot \vec{T}(t)=s^{\prime \prime}(t) .
$$

The first of these equations can be used to find the curvature:

$$
\kappa_{g}(t)=\frac{\vec{x}^{\prime \prime}(t) \cdot \vec{U}(t)}{s^{\prime}(t)^{2}}=\frac{-x^{\prime \prime}(t) y^{\prime}(t)+y^{\prime \prime}(t) x^{\prime}(t)}{s^{\prime}(t)^{3}} .
$$

From a computational perspective, this is probably the most useful formula for curvature.

7. Derivatives of Vectors

More generally, if

$$
\vec{V}(t)=r(t)(\cos \theta(t), \sin \theta(t))
$$

is any vector, then

$$
\vec{V}^{\prime}(t)=r(t) \theta^{\prime}(t) \vec{U}(t)+r^{\prime}(t) \vec{T}(t)
$$

where $\vec{T}(t)$ is the unit vector in the direction of $\vec{V}(t)$, and $\vec{U} t$ is the unit vector 90° counterclockwise from $\vec{T}(t)$. The acceleration formula above is the case where $\vec{V}(t)=\vec{x}^{\prime}(t)$ (and hence $\left.r(t)=s^{\prime}(t)\right)$.

Since $\vec{T}(t)$ and $\vec{U}(t)$ are perpendicular vectors, this formula can also be written

$$
\vec{V}^{\prime}(t) \cdot \vec{U}(t)=r(t) \theta^{\prime}(t) \quad \text { and } \quad \vec{V}^{\prime}(t) \cdot \vec{T}(t)=r^{\prime}(t) .
$$

8. The Integral of Curvature

If \mathcal{C} is the curve $\vec{x}(t)$ for $a \leq t \leq b$, then

$$
\int_{\mathcal{C}} \kappa_{g}(t) d s=\theta(b)-\theta(a)
$$

If \mathcal{C} is a regular closed curve, it follows that

$$
\int_{\mathcal{C}} \kappa_{g}(t) d s=2 \pi n
$$

where n is an integer called the rotation index of \mathcal{C}.

9. Finding the Curve

Suppose we are given the curvature function $\kappa_{g}(s)$ for a unit-speed curve. Then the angle function $\theta(s)$ and parametrization $\vec{x}(s)$ can be recovered using the formulas

$$
\theta(s)=\int \kappa_{g}(s) d s \quad \text { and } \quad \vec{x}(s)=\int(\cos \theta(s), \sin \theta(s)) d s
$$

